
Contract–based design and verification
using SPARK 2014

Simon Buist Stuart Matthews Thomas Wilson

12 June, Ada Europe 2019, Warsaw

Copyright ©2019 Altran. All rights reserved.



Agenda

• Introduction
• Context of the system
• Worked example

• Test–driven development (TDD)
• Contracts

• How contracts affected design & verification
• Benefits of using contracts

2 Contract–based design and verification using SPARK 2014



Introduction

• This talk details the practical experience of using
SPARK 2014 contracts in the implementation of a critical
system.

• It is a high safety-integrity system compliant with UK DEF
STAN 00-56.

3 Contract–based design and verification using SPARK 2014



Embedded Protection Subsystem

Figure 1: Boiler

4 Contract–based design and verification using SPARK 2014



Worked example: TDD

Figure 2: SCADE Requirement

5 Contract–based design and verification using SPARK 2014



Comparing TDD with Contracts

TDD
SCADE → English Specification → Test → Implementation

Contracts
SCADE → Contract → Static analysis → Implementation

6 Contract–based design and verification using SPARK 2014



Worked example: TDD

English specification

[Pressure is ... of Pressure_1 and Pressure_2]

If [Status = Failed_Safe]
in any previous cycle then [Status = Failed_Safe]

Otherwise, if [Pressure > Safety_Threshold] then
[Status = Failed_Safe]

Otherwise, if [Pressure > Warning_Threshold] then
[Status = Warning]

Otherwise, if [Pressure <= Warning_Threshold] then
[Status = OK]

Otherwise, [Status = Failed_Safe]

7 Contract–based design and verification using SPARK 2014



Worked example: TDD

API

function Update (Old_State : State_T;
Pressure_1 : Base_Types.Float64;
Pressure_2 : Base_Types.Float64)

return Result_T;

8 Contract–based design and verification using SPARK 2014



Worked example: TDD
Test

procedure Test_Calculate_Pressure
is

Test_Initialise;
Test_Step_Covers ("S.Calculate_Pressure.Scenario.1");
Set_State (Old_State => State_T'(...),

Pressure_1 => Base_Types.Float64 (0.0),
Pressure_2 => Base_Types.Float64 (1.0));

Check_Result(
Result_T'(Boiler_Monitor_State => Monitoring;

Status => OK;
Valve => Closed));

Test_Initialise; -- another test step...
end Test_Calculate_Pressure;

9 Contract–based design and verification using SPARK 2014



Worked example: Contracts

Figure 3: Contracts

10 Contract–based design and verification using SPARK 2014



Worked example: Contracts

Figure 4: SCADE Requirement

11 Contract–based design and verification using SPARK 2014



Worked example: Contracts
function Update (...) return Result_T
with Post => (
(Calculate_Pressure.Result_T' (

State => Update'Result.State.Calculate_Pressure_1_State,
Output_1 => Update'Result.State.Pressure) = Calculate_Pressure.Update (

Old_State => Old_State.Calculate_Pressure_1_State, Input_1 => Pressure_1,
Input_2 => Pressure_2)) and then

(if Old_State.Boiler_Monitor_States = Monitoring then
(if (Update'Result.State.Pressure > Constants.SCADE.Safety_Threshold) then

Update'Result.State.Boiler_Monitor_States = Fail_Safe
elsif (Update'Result.State.Pressure > Constants.SCADE.Warning_Threshold) then

Update'Result.State.Boiler_Monitor_States = Warning
else Update'Result.State.Boiler_Monitor_States = Old_State.Boiler_Monitor_States))

and then
(if Old_State.Boiler_Monitor_States = Warning then

(if (Update'Result.State.Pressure > Constants.SCADE.Safety_Threshold) then
Update'Result.State.Boiler_Monitor_States = Fail_Safe

elsif (Update'Result.State.Pressure <= Constants.SCADE.Warning_Threshold) then
Update'Result.State.Boiler_Monitor_States = Monitoring

else Update'Result.State.Boiler_Monitor_States = Old_State.Boiler_Monitor_States))
and then

(if Old_State.Boiler_Monitor_States = Fail_Safe then
Update'Result.State.Boiler_Monitor_States = Old_State.Boiler_Monitor_States)

and then
(if Update'Result.State.Boiler_Monitor_States = Monitoring then

Update'Result.Valve = Update'Result.State.Closed and then
Update'Result.Status = Update'Result.State.Ok) and then

(if Update'Result.State.Boiler_Monitor_States = Warning then
Update'Result.Valve = Update'Result.State.Closed and then
Update'Result.Status = Update'Result.State.Warning) and then

(if Update'Result.State.Boiler_Monitor_States = Fail_Safe then
Update'Result.Valve = Update'Result.State.Opened and then
Update'Result.Status = Update'Result.State.Failed_Safe));

12 Contract–based design and verification using SPARK 2014



Worked example: Contracts

.

13 Contract–based design and verification using SPARK 2014



Autogenerated Ada body
function Update (Old_State : State_T;

Pressure_1 : Base_Types.Float64;
Pressure_2 : Base_Types.Float64) return Result_T

is
Result : Result_T;

begin
Result.State.Pressure := Calculate_Pressure.Update (

Old_State => Old_State.Calculate_Pressure_1_State,
Input_1 => Pressure_1,
Input_2 => Pressure_2).Output_1;

Result.State.Calculate_Pressure_1_State := Calculate_Pressure.Update (
Old_State => Old_State.Calculate_Pressure_1_State,
Input_1 => Pressure_1,
Input_2 => Pressure_2).State;

Result.State.Boiler_Monitor_States := (if
(Old_State.Boiler_Monitor_States = Monitoring) then (if (Result.State.Pressure
> Constants.SCADE.Safety_Threshold) then Fail_Safe else (if
(Result.State.Pressure > Constants.SCADE.Warning_Threshold) then Warning else
Old_State.Boiler_Monitor_States)) else (if (Old_State.Boiler_Monitor_States =
Warning) then (if (Result.State.Pressure > Constants.SCADE.Safety_Threshold)
then Fail_Safe else (if (Result.State.Pressure <=
Constants.SCADE.Warning_Threshold) then Monitoring else
Old_State.Boiler_Monitor_States)) else Old_State.Boiler_Monitor_States));
Result.Valve := (if (Result.State.Boiler_Monitor_States = Monitoring) then
Result.State.Closed else (if (Result.State.Boiler_Monitor_States = Warning)
then Result.State.Closed else Result.State.Opened));

Result.Status := (if
(Result.State.Boiler_Monitor_States = Monitoring) then Result.State.Ok else (if
(Result.State.Boiler_Monitor_States = Warning) then Result.State.Warning else
Result.State.Failed_Safe));

return Result;
end Update;

14 Contract–based design and verification using SPARK 2014



Comparing TDD with Contracts

Figure 5: TDD

15 Contract–based design and verification using SPARK 2014



Comparing TDD with Contracts

Figure 6: Contracts

16 Contract–based design and verification using SPARK 2014



How contracts affected verification

Verification of the system takes a hybrid approach, using both
proof and test to establish functional correctness of the
implementation. The SPARK 2014 contracts play a role in both
these verification activities.

17 Contract–based design and verification using SPARK 2014



How contracts affected verification: dynamic (testing)

• Run-time checking of the contracts ensures they are always
met during system testing, because we’re using Ada 2012
contracts.

• Even though functional correctness had been proven, the
run-time checking found an error in a low-level interrupt
handler.

Verification: delivered executable

• Using the flag --gnata, we left the contracts built-in to the
delivered executable.

• We designed the system so that any failure of such a
run-time check will have the effect of putting the system into
a safe state.

18 Contract–based design and verification using SPARK 2014



Run-time checking of contracts

When we used 64-bit floating point operations within interrupt
handlers for the first time, if the interrupt handler interrupted a
floating point operation then the top 32-bits of the registers could
be corrupted

Figure 7: Register corruption

19 Contract–based design and verification using SPARK 2014



Conclusion

• Zero defects found in code derived from SCADE
specifications.

• Leaving run-time checks in found fault on target bootloader.
• We found a viable & practicable technique for proving

correctness against the SCADE specification.

Acknowledgement: This work was supported by the
SECT-AIR project, funded by the Aerospace Technology Institute and
Innovate UK, as project number 113099.

20 Contract–based design and verification using SPARK 2014




